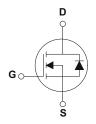


# FHP7N60/FHF7N60

### 产品描述


7N60为N沟道增强型高压功率MOS场效应管。该产品广泛适用于AC-DC开关电源,DC-DC电源转换器,高压H桥PMW马达驱动。

## 产品特点

 $7.0A,600V,RDS(on)=1.3\Omega(max)$  @VGS=10 V 低电荷、低反向传输电容 开关速度快







### 极限值 (TC=25℃)

| 参数名称           | 符号                                | FHP7N60 | FHF7N60 | 单位   |
|----------------|-----------------------------------|---------|---------|------|
| 漏-源电压          | $V_{\mathrm{DS}}$                 | 60      | V       |      |
| 漏极直流电流         | T                                 | 7       | Α       |      |
|                | $I_{D}$                           | 4.      | А       |      |
| 最大脉冲漏极电流       | $I_{DM}$                          | 2       | А       |      |
| 栅-源电压          | $V_{GS}$                          | ±:      | V       |      |
| <br>耗散功率       | D                                 | 83      | 31      | W    |
| 超过25℃时的降额因子    | $P_{\rm D}$                       | 0.67    | 0.21    | W/°C |
|                | T <sub>J</sub> , T <sub>stg</sub> | 150, -5 | °C      |      |
| 最高焊接温度         | $T_{L}$                           | 30      | °C      |      |
| 单脉冲雪崩击穿能量      | $E_{AS}$                          | 23      | mJ      |      |
| 重复脉冲雪崩击穿能量     | E <sub>AR</sub>                   | 8.      | mJ      |      |
| 雪崩电流           | $I_{AR}$                          | 7       | A       |      |
| 二极管反向恢复峰值dv/dt | dv/dt                             | 4.5     | V/ns    |      |

# 特性参数值(TC=25°C)

| 参数说明    | 符号                  | 测试条件                                                          | 最小值 | 典型值 | 最大值  | 单位   |
|---------|---------------------|---------------------------------------------------------------|-----|-----|------|------|
| 漏-源击穿电压 | BVdss               | $V_{GS=0V}, I_{D=250uA}$                                      | 600 |     |      | V    |
| 电压温度系数  | △BVDSS/△TJ          | I <sub>D</sub> =250uA,参考25℃                                   |     | 0.6 |      | V/°C |
| 漏源截止电流  | $I_{DSS}$           | $V_{DS=600V,}V_{GS=0V}$                                       |     |     | 1    | μА   |
| 栅源截止电流  | $I_{GSS(F/R)}$      | $V_{\text{GS}=}\!\pm\!30\text{V},\!V_{\text{DS}=\!0\text{V}}$ |     |     | ±100 | nA   |
| 通态电阻    | R <sub>DS(ON)</sub> | $V_{GS=10V}, I_{D=3.5A}$                                      |     | -   | 1.3  | Ω    |
| 栅源极开启电压 | V <sub>GS(th)</sub> | $V_{DS}=V_{GS},I_{D}=250\mu A$                                | 2.0 |     | 4.0  | V    |
| 跨导      | $g_{FS}$            | $I_{D=3.5A}, V_{DS=40V}$                                      |     | 6   |      | S    |

# 开关特性

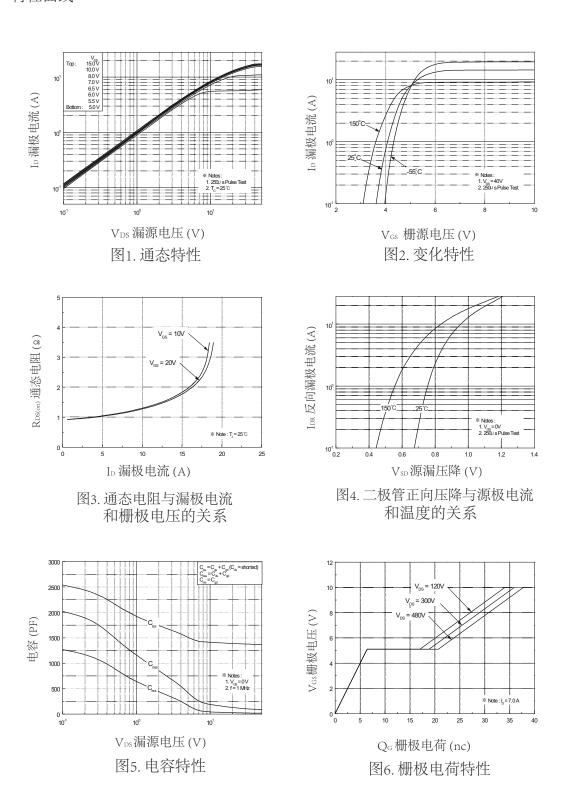
| 参数说明     | 符号      | 测试条件                                               | 最小值 | 典型值 | 最大值 | 单位 |
|----------|---------|----------------------------------------------------|-----|-----|-----|----|
| 栅极电荷     | Qg      | $ m V_{DS=480V}$                                   |     | 38  | 50  | nC |
| 栅源电荷     | Qgs     | $I_{D=7A}$                                         |     | 6.4 |     | nC |
| 栅漏电荷     | Qgd     | $V_{GS=10V}$                                       |     | 15  |     | nC |
| 延迟时间(开启) | Td(on)  | $V_{ m DD=300V} \ I_{ m D=7A} \ R_{ m G=25\Omega}$ |     | 30  | 70  | ns |
| 上升时间     | Tr      |                                                    |     | 80  | 170 | ns |
| 延迟时间     | Td(off) |                                                    |     | 125 | 260 | ns |
| 下降时间     | Tf      |                                                    |     | 85  | 180 | ns |

# 动态特性

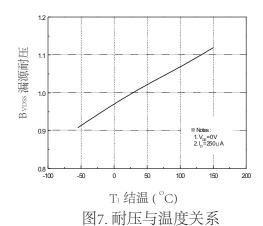
| 参数说明   | 符号               | 测试条件                            | 最小值 | 典型值  | 最大值  | 单位 |
|--------|------------------|---------------------------------|-----|------|------|----|
| 输入电容   | $C_{iss}$        | $V_{DS=25V,V_{GS=0V,f=1.0MHz}}$ |     | 1380 | 1800 | pF |
| 输出电容   | Coss             | $V_{DS=25V,V_{GS=0V,f=1.0MHz}}$ |     | 115  | 150  | pF |
| 反向传输电容 | C <sub>rss</sub> | $V_{DS=25V,V_{GS=0V,f=1.0MHz}}$ |     | 23   | 30   | pF |

# 漏-源二极管特性

| 参数说明      | 符号  | 测试条件                                      | 最小值 | 典型值 | 最大值 | 单位 |
|-----------|-----|-------------------------------------------|-----|-----|-----|----|
| 源极电流      | Is  |                                           |     |     | 7.0 | A  |
| 源漏二极管正向压降 | Vsd | V <sub>G</sub> S=0V, I <sub>S</sub> =7.0A |     |     | 1.4 | V  |
| 反向恢复时间    | trr | V <sub>GS</sub> =0V, I <sub>S</sub> =7.0A |     | 320 |     | ns |
| 反向恢复电荷    | Qrr | di/dt=100A/us                             |     | 2.4 |     | μС |


## 热阻特性

| 参数说明      | 符号             | 最为            | 单位            |      |
|-----------|----------------|---------------|---------------|------|
| 结到壳的热阻    | RθJC           | 0.85 (TO-220) | 2.6 (TO-220F) | °C/W |
| · 结到环境的热阻 | $R_{	heta}$ JA | 62.           | °C/W          |      |


#### 声明:

- 1.飞虹保留规格书的更改权, 怒不另行通知! 客户在下单前应获取最新版本资料, 并验证相关信息是否完整和最新。
- 2.产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!

#### 特性曲线



### 特性曲线



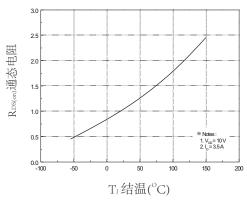



图8. 通态电阻与温度关系

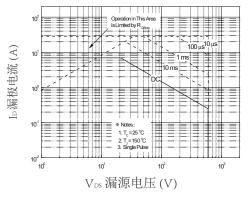



图9-1. 安全使用范围 (TO-220)

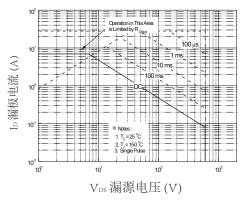



图9-2. 安全使用范围 (TO-220F)

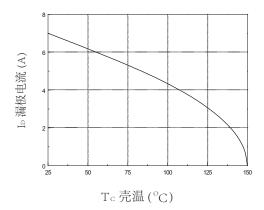
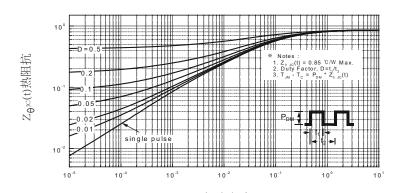
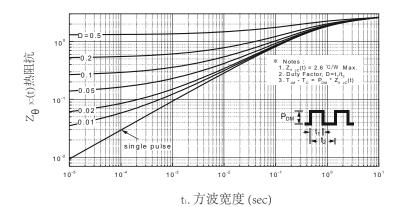
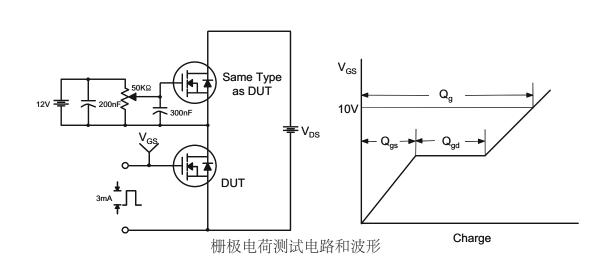
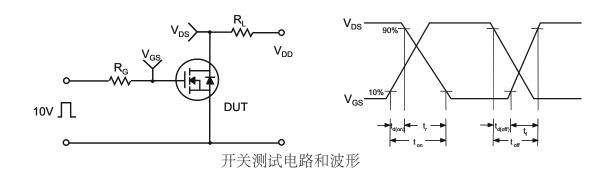
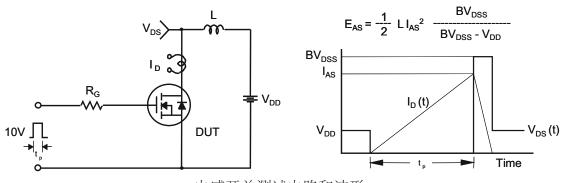



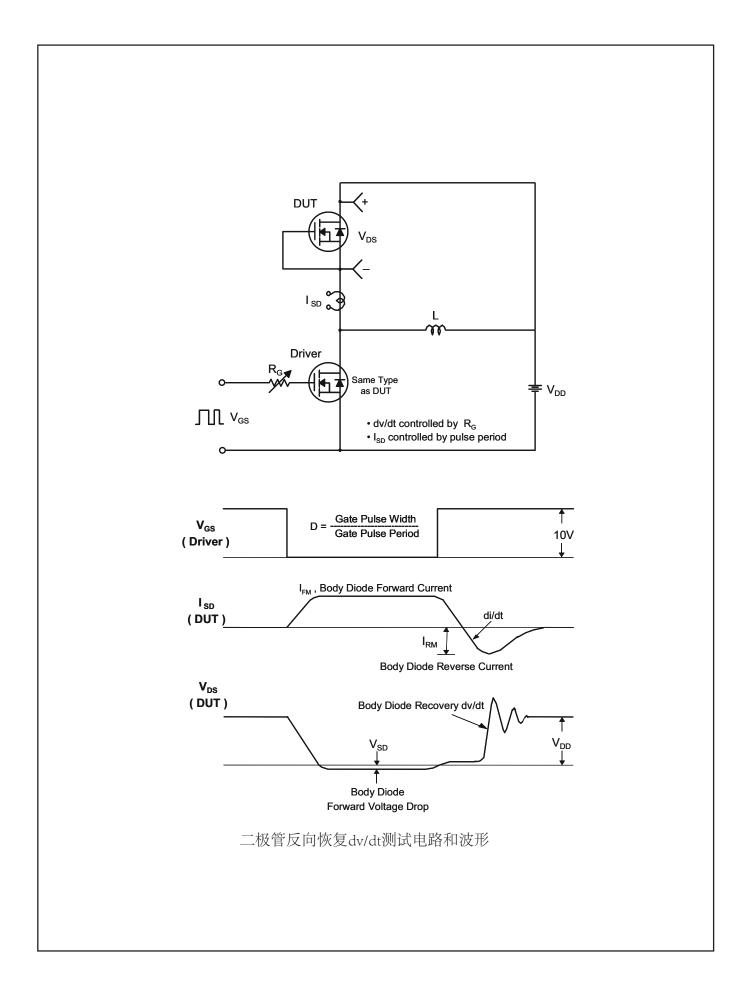

图10. 最大漏极电流与壳温关系

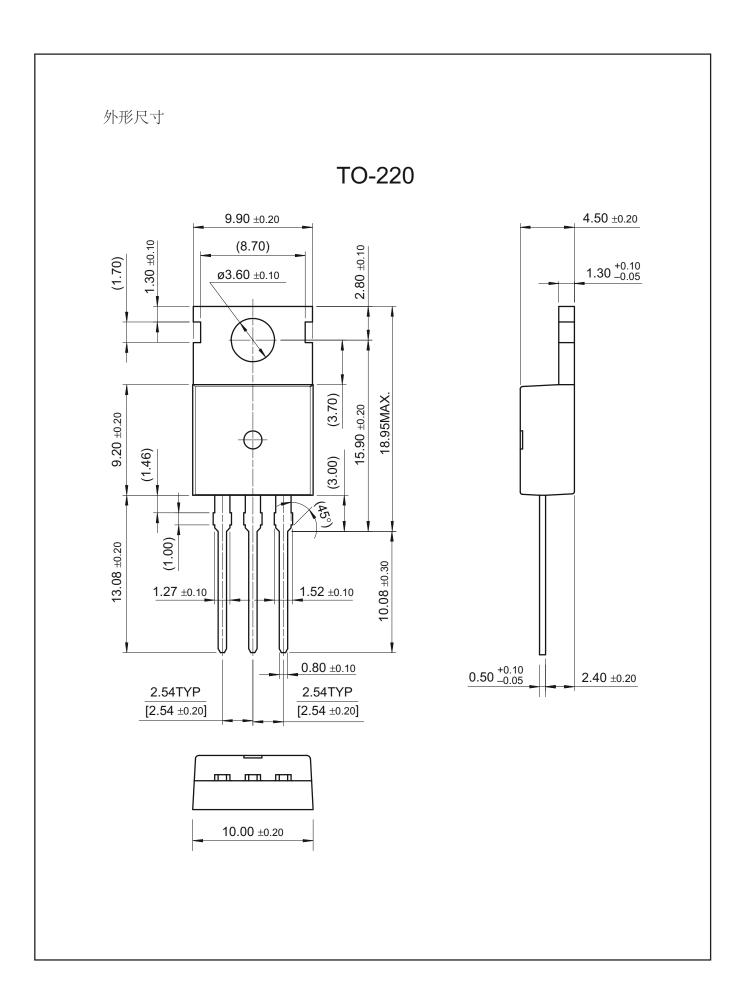
## 特性曲线

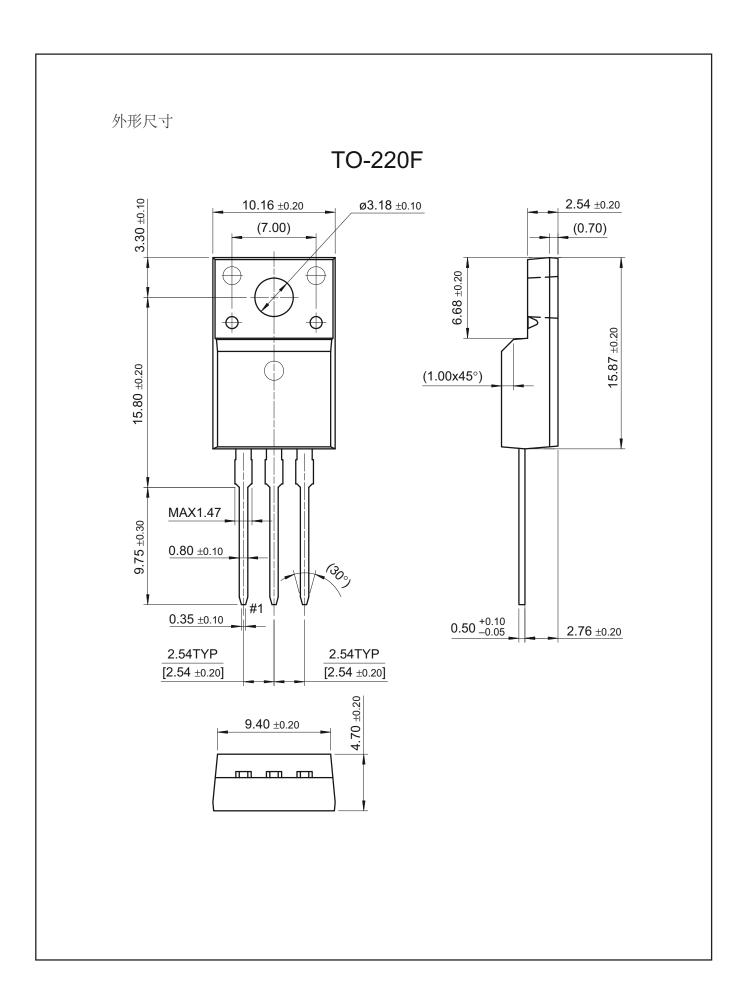


t<sub>1</sub>方波宽度(sec) 图11-1. 热阻抗变化曲线(TO-220)



图11-2. 热抗阻变化曲线(TO-220F)






电感开关测试电路和波形





