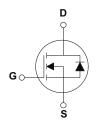


FHP10N60/FHF10N60

产品描述


10N60为N沟道增强型高压功率MOS场效应管。该产品广泛适用于AC-DC开关电源,DC-DC电源转换器,高压H桥PMW马达驱动。

产品特点

10A,600V, RDS(on) = $0.85\,\Omega$ (max) @VGS = $10\,V$ 低电荷、低反向传输电容 开关速度快

极限值 (TC=25℃)

	ı			
参数名称	符号	FHP10N60	FHF10N60	单位
漏-源电压	V_{DS}	60	00	V
漏极直流电流	T	10	А	
漏极直流电流@Tc=100℃	I_D	6.	A	
最大脉冲漏极电流	I_{DM}	4	0	Α
栅-源电压	V_{GS}	±30		V
耗散功率	P_{D}	156	50	W
超过25℃时的降额因子	1 D	1.25	0.4	W/°C
结温和存储温度	T _J , T _{stg}	150, -5	°C	
最高焊接温度	$T_{ m L}$	300		°C
单脉冲雪崩击穿能量	E_{AS}	70	mJ	
重复脉冲雪崩击穿能量	E_{AR}	15.	mJ	
雪崩电流	I_{AR}	10	A	
二极管反向恢复峰值dv/dt	dv/dt	4.5	V/ns	

特性参数值(TC=25°C)

参数说明	符号	测试条件	最小值	典型值	最大值	单位
漏-源击穿电压	BVdss	$V_{GS=0V}, I_{D=250uA}$	600			V
电压温度系数	$\triangle BV_{DSS}/\triangle T_J$	I _D =250uA,参考25℃		0.7		V/°C
漏源截止电流	I_{DSS}	$V_{DS=600V,}V_{GS=0V}$			1	μА
栅源截止电流	I _{GSS(F/R)}	$V_{GS}=\pm30V, V_{DS}=0V$			±100	nA
通态电阻	R _{DS(ON)}	$V_{GS=10V}, I_{D=5A}$		-	0.85	Ω
栅源极开启电压	V _{GS(th)}	$V_{DS=}V_{GS},I_{D=250\mu A}$	2.0		4.0	V
跨导	g_{FS}	$I_{D=5A}$, $V_{DS=40V}$		8		S

开关特性

参数说明	符号	测试条件	最小值	典型值	最大值	单位
栅极电荷	Qg	$ m V_{DS=480V}$		44	57	nC
栅源电荷	Qgs	$I_{D=10A}$ $V_{GS=10V}$		6.7		nC
栅漏电荷	Qgd			18.5		nC
延迟时间(开启)	Td(on)	$V_{DD=300V} \\ I_{D=10A} \\ R_{G=25\Omega}$		23	55	ns
上升时间	Tr			69	150	ns
延迟时间	Td(off)			144	300	ns
下降时间	Tf			77	165	ns

动态特性

参数说明	符号	测试条件	最小值	典型值	最大值	单位
输入电容	C_{iss}	$V_{DS=25V,V_{GS=0V,f=1.0MHz}}$		1570	2040	pF
输出电容	Coss	$V_{DS=25V,V_{GS=0V,f=1.0MHz}}$		166	215	pF
反向传输电容	C _{rss}	$V_{DS=25V,V_{GS=0V,f=1.0MHz}}$		18	24	pF

漏-源二极管特性

参数说明	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is				10	A
源漏二极管正向压降	Vsd	V _G S=0V, I _S =10A			1.4	V
反向恢复时间	trr	V _{GS} =0V, I _S =10A		360		ns
反向恢复电荷	Qrr	di/dt=100A/us		3.2		μС

热阻特性

参数说明	符号	最大值		单位
结到壳的热阻	RøJc	0.8 (TO-220) 2.5 (TO-220F)		°C/W
· 结到环境的热阻	$R_{ heta}$ JA	62.	°C/W	

声明:

- 1.飞虹保留规格书的更改权, 怒不另行通知! 客户在下单前应获取最新版本资料, 并验证相关信息是否完整和最新。
- 2.产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!

特性曲线

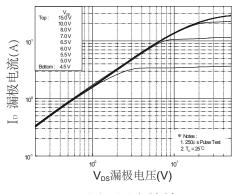


图1.通态特性

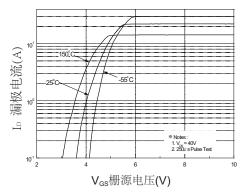


图2.变化特性

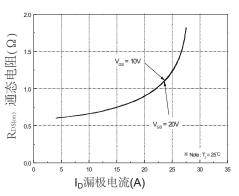
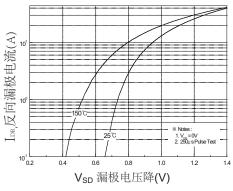
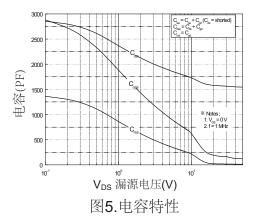




图3.通态电阻与漏极电流 和栅极电压的关系

图**4**.二级管正向压降与源 极电流和温度的关系

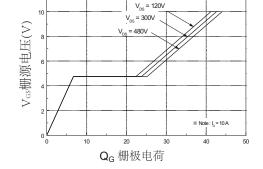


图6.栅极电荷特性

特性曲线

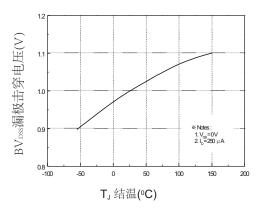


图7. 击穿电压与温度的关系

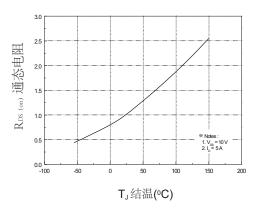


图8. 通态电阻与温度的关系

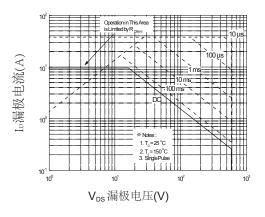


图9-1. 最大使用范围(TO-220)

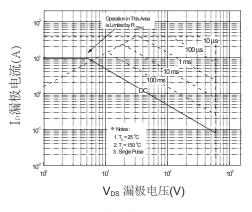


图9-2. 最大使用范围(TO-220)

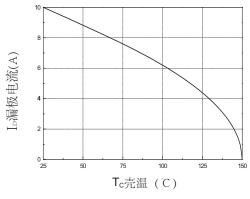


图10. 最大漏极电流与壳温的关系

特性曲线

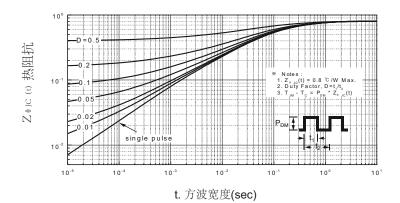
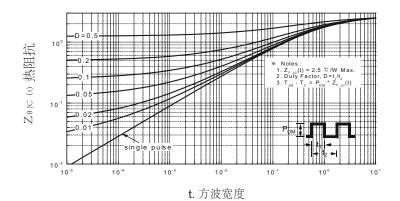
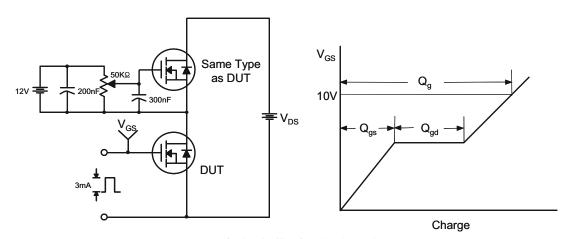
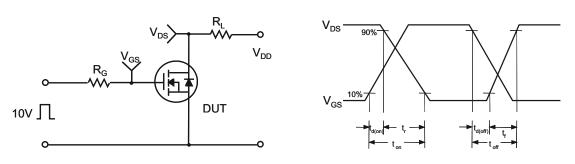
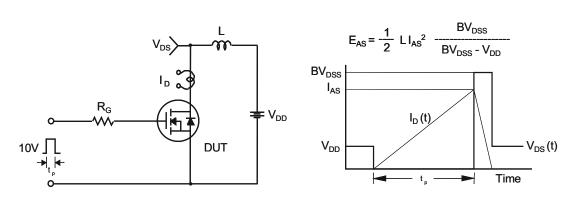
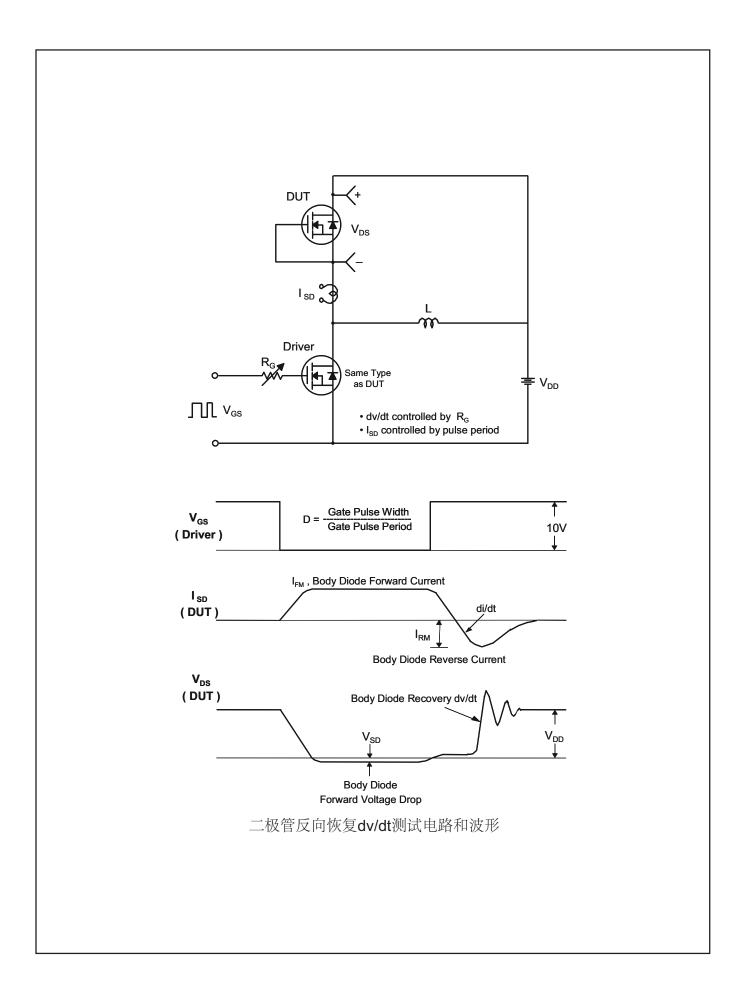


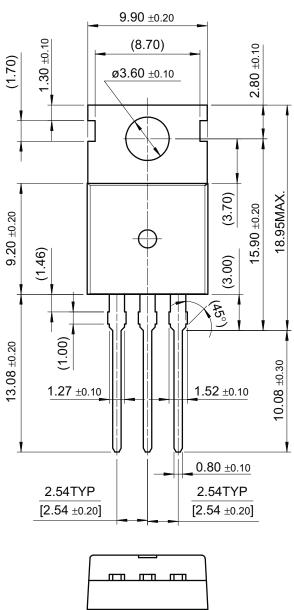
图11-1. 热阻抗变化曲线(TO-220)

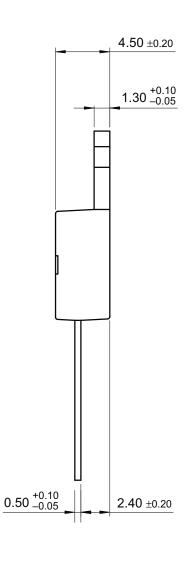




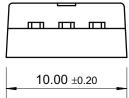

图11-2 热阻抗变化曲线(TO-220F)


栅极电荷测试电路和波形

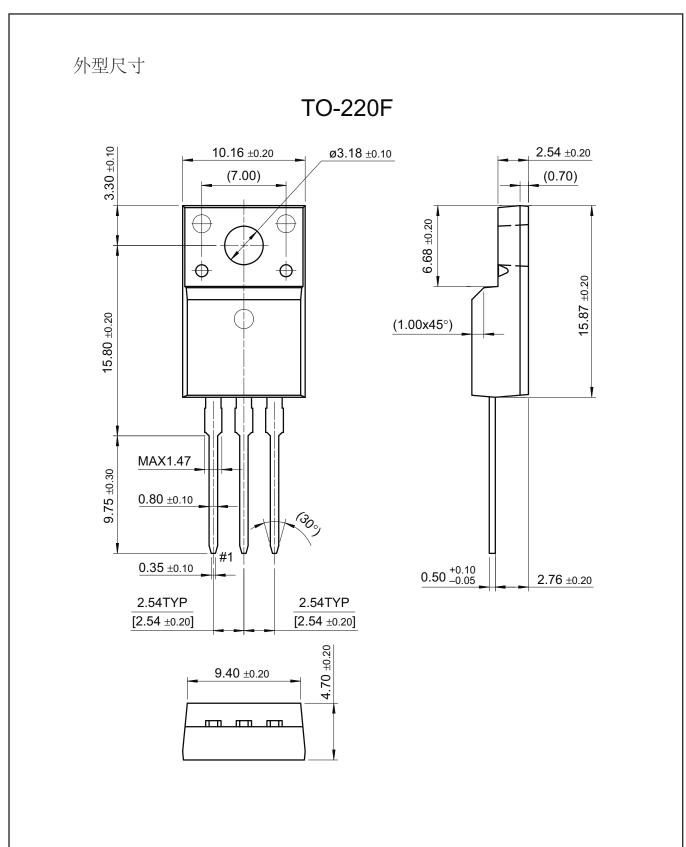
开关测试电路和波形




电感开关测试电路和波形



外型尺寸


TO-220

尺寸单位:毫米

尺寸单位:毫米